Железо. Положение железа в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства железа


 

 

 

 

Данный урок посвящен изучению темы «Свойства железа». Вы познакомитесь со свойствами химического элемента железа, строением его атома и характерными степенями окисления. Также в уроке будут рассмотрены физические и химические свойства простого и сложных веществ, образованных железом.

I. Фильм: “Физические и химические свойства железа”


II. "Появление железа"


Появление железа в человеческой цивилизации положило начало железному веку.

Откуда же  древние люди брали железо в то время, когда еще не умели добывать его из руды? Железо в переводе с шумерского языка – это металл, “капнувший с неба, небесный”. Первое железо, с которым столкнулось человечество, было железом из метеоритов. Впервые доказал, что “железные камни падают с неба”, в 1775 г. русский ученый П.С. Палас, который привез в Петербург глыбу самородного железного метеорита весом 600 кг. Самым крупным железным метеоритом является найденный в 1920 г. в Юго-Западной Африке метеорит “Гоба” весом около 60 т. Вспомним гробницу Тутанхамона: золото, золото. Великолепная работа восхищает, блеск слепит глаза. Но вот что пишет К.Керрам в книге “Боги, гробницы, ученые” о маленьком железном амулете Тутанхамона: “Амулет относится к числу наиболее ранних изделий Египта, и …в гробнице, наполненной чуть ли не до отказа золотом, именно эта скромная находка имела наибольшую с точки зрения истории культуры ценность”. Всего несколько железных изделий было найдено в гробнице фараона, среди них железный амулет бога Гора, небольшой кинжальчик с железным клинком и золотой рукояткой, маленькая железная скамеечка “Урс”.

Ученые предполагают, что именно страны Малой Азии, где проживали племена хеттов, были местом возникновения черной металлургии. В Европу железо пришло из Малой Азии уже в I тыс. до н.э.; так в Европе начался железный век.

Знаменитую булатную сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до н.э.). Но технология ее изготовления держалась в секрете много веков.

Мне приснилась иная печаль
Про седую дамасскую сталь.
Я увидел, как сталь закалялась,
Как из юных рабов одного
Выбирали, кормили его,
Чтобы плоть его сил набиралась.
Выжидали положенный срок,
А потом раскаленный клинок
В мускулистую плоть погружали,
Вынимали готовый клинок.
Крепче стали, не видел Восток,
Крепче стали и горше печали.

Поскольку булат – это сталь с очень большой твердостью и упругостью, изготовленные из нее изделия обладают способностью не тупиться, будучи остро заточенными. Раскрыл секрет булата русский металлург П.П. Аносов. Он очень медленно охлаждал раскаленную сталь в специальном растворе технического масла, подогретого до определенной температуры; в процессе охлаждения сталь ковалась.

III. Положение железа в периодической таблице химических элементов и строение его атома


Железо - это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar(Fe) = 56; состав атома: 26-протонов; 30 – нейтронов; 26 – электронов.

Схема строения атома:

Электронная формула: 1s22s22p63s23p63d64s2

Металл средней активности, восстановитель:

Fe0-2e-→Fe+2, окисляется восстановитель

Fe0-3e-→Fe+3, окисляется восстановитель

Основные степени окисления: +2, +3

IV. Распространённость железа


Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Близ г. Дели в Индии стоит железная колонна без малейшего пятнышка ржавчины, хотя ее возраст почти 2800 лет. 

 

 

 

 

 

 

Это знаменитая Кутубская колонна высотой около семи метров и массой 6.5 т. Надпись на колонне говорит о том, что она была поставлена в IX в. До н. э. Ржавление железа – образование метагидроксида железа – связано с взаимодействием его с влагой и кислородом воздуха.

Однако эта реакция при отсутствии в железе различных примесей, и прежде всего углерода, кремния и серы, не протекает. Колонна была изготовлена из очень чистого металла: железа в колонне оказалось 99,72%. Этим и объясняется ее долговечность и коррозионная устойчивость.

В 1934 г. в "Горном журнале" появилась статья "Улучшение железа и стали посредством...ржавления в земле". Способ превращения железа в сталь через ржавление в земле известен людям с глубокой древности. Например, черкесы на Кавказе закапывали полосовое железо в землю, а откопав его через 10-15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит, кости врага.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.

Основными железными рудами являются:

Магнетит (магнитный железняк) – Fe3O4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:

 

 

Как сообщал римский ученый Плиний, магнетит назван в честь греческого пастуха Магнеса. Магнес пас стадо возле холма над р. Хинду в Фессалии. Неожиданно посох с железным наконечником и подбитые гвоздями сандалии притянула к себе гора, сложенная сплошным серым камнем. Минерал магнетит дал в свою очередь название магниту, магнитному полю и всему загадочному явлению магнетизма, которое пристально изучается со времен Аристотеля и по сей день.

Магнитные свойства этого минерала и сегодня используются, прежде всего для поиска месторождений. Именно так были открыты уникальные месторождения железа на площади Курской магнитной аномалии (КМА). Минерал тяжелый: образец магнетита размером с яблоко весит 1,5 кг.

В древности магнетит наделяли всевозможными лечебными свойствами и способностью творить чудеса. Его использовали для извлечения металла при ранениях, а Иван Грозный среди своих сокровищ наравне с другими камнями хранил его непримечательные кристаллы.

Гематит (железный блеск, кровавик) – Fe2O3содержит до 65% железа, такие месторождения встречаются в Криворожском районе:

 

 

Гематит известен с давних пор. В Вавилоне и Древнем Египте он использовался в украшениях, для изготовления печатей, наряду с халцедоном служил излюбленным материалом в качестве резного камня. У Александра Македонского был перстень с вставкой из гематита, который, как он полагал, делал его неуязвимым в бою. В древности и в Средние века гематит слыл лекарством, останавливающим кровь. Порошок из этого минерала издревле использовали для золотых и серебряных изделий.

Название минерала происходит от греческого дета – кровь, что связано с вишневым или сургучно-красным цветом порошка этого минерала.

Важной особенностью минерала является способность стойко хранить цвет и передавать его другим минералам, в которые попадает хотя бы небольшая примесь гематита. Розовый цвет гранитных колонн Исаакиевского собора – это цвет полевых шпатов, которые в свою очередь окрашены тонкораспыленным гематитом. 

Живописные узоры яшмы, используемой при отделке станций столичного метро, оранжевые и розовые сердолики Крыма, кораллово-красные прослойки сильвина и карналлита в соляных толщах – все обязаны своим цветом гематиту.

Издавна из гематита делали красную краску. Все известные фрески, выполненные 15-20 тыс. лет назад, – замечательные бизоны Альтамирской пещеры

и мамонты из знаменитой Капской пещеры – выполнены и коричневыми оксидами и гидроксидами железа.

Лимонит (бурый железняк) – Fe2O3*nH2O содержит до 60% железа, месторождения встречаются в Крыму:

Пирит (серный колчедан, железный колчедан, кошачье золото) – FeS2 содержит примерно 47% железа, месторождения встречаются на Урале.

Пирит получил свое название от греческого слова "пирос" – огонь, что связано с его свойством искрить при ударе стальными предметами. Этот красивый минерал поражает золотистым цветом, ярким блеском на почти всегда четких гранях. Благодаря своим свойствам пирит известен с глубокой древности, а во время эпидемий золотой лихорадки пиритовые блестки в кварцевой жиле вскружили не одну горячую голову. Да и сейчас начинающие любители камня нередко принимают пирит за золото.

Пирит – минерал вездесущий: он образуется из магмы, из паров и растворов, и даже из осадков, каждый раз в специфических формах и сочетаниях. Известен случай, когда за несколько десятилетий в пирит превратилось тело упавшего в шахту рудокопа. Железа в пирите немало – 46,5%, но извлекать его дорого и невыгодно.

V. Роль железа в жизни человека и растений


Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO2.

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

VI. Физические свойства железа


Железо – это серебристо-белый металл с температурой плавления 1539оС. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозии  и хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

VII. Получение железа


Восстановлением из оксидов углём или оксидом углерода (II), а также водородом:

FeO + C = Fe + CO

Fe2O3 + 3CO = 2Fe + 3CO2

Fe2O3 + 3H2 = 2Fe + 3H2O

Опыт: "Получение железа алюминотермией"

VIII. Химические свойства железа


Как элемент побочной подгруппы железо может проявлять несколько степеней окисления. Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления +2 и +3. Таким образом, можно говорить, что у железа имеется два ряда соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

 4Fe + 3O2 + 6H2 O = 4Fe(OH)3

 2) Накалённая железная проволока горит в кислороде, образуя окалину - оксид железа (II,III) - вещество чёрного цвета:

 3Fe + 2O2 = Fe3O4

C  кислородом во влажном воздухе образуется Fe2O3*nH2O

Это интересно:

“Может ли коррозия приносить пользу?!”

У древних горцев существовал особый секрет приготовления сверхпрочных и острых клинков, которые легко разрубали не только ткани, но и сухожилия и кости. Изделия на несколько лет закапывали в землю, после специальной обработки поржавевших клинков они приобретали высокую прочность.
Любопытную технологию превращения слоя ржавчины в... защитное покрытие удалось разработать индийским ученым. Для этого на стальное изделие, покрытое густым налетом ржавчины, наносят специальный состав, благодаря которому слой оксидов становится прочным панцирем черного цвета. Затем на него наносят краску, которая, кстати, держится на этом защитном слое надежнее, чем непосредственно на металлической поверхности. Теперь изделию коррозия не страшна.
В технике нашла применение и сама ржавчина как защитное средство. Например, освоена выплавка низколегированных сталей с малым содержанием никеля, хрома и меди. Подобная сталь быстро ржавеет, но под слоем опавшей ржавчины остается плотная черная пленка, которая крепко сцепляется с металлом и практически полностью защищает его от дальнейшей коррозии. Время, необходимое для образования защитного слоя, колеблется от двух до четырех лет. После этого скорость коррозии уменьшается и составляет от 2 до 35 мк в год в зависимости, от условий. В обычных условиях лист из такой стали проржавел бы лишь на 0,3 мм.
В 1834 г. в «Горном журнале» была опубликована статья «Улучшение железа и стали посредством ржавления в земле». Способ превращения железа в сталь через ржавление в земле известен людям с глубокой древности. Например, черкесы на Кавказе закапывали полосовое железо в землю, а откопав его через 10— 15 лет, выковывали из него свои сабли, которые могли пере­рубить даже ружейный ствол, щит, кости врага. В земле железо, естественно, ржавело, превращаясь в метагидроксид железа, но одновременно насыщалось углеродом и азотом при контакте с различными органическими веществами почвы.

Ржавчина обладает хорошей сорбционной способностью к различным органическим веществам. После выкапывания ржавое железо вместе с органическими веществами нагрева­ли в горнах, ковали, а затем охлаждали водой — закаливали. Углерод и азот появлялись в поверхностном слое откованного металла, упрочняя его и сообщая ему особую твердость. В слое при термической обработке образуется очень твердое соединение: карбид железа Fe3С — цементит. Впоследствии для получения твердой стали вместо длительного пребывания железа в земле перешли к плавке железа под слоем древесного угля.
Источник: Химия в школе

Опыт: "Взаимодействие железа с кислородом"

3)  При высокой температуре (700–900°C) железо реагирует с парами воды:

 3Fe + 4H2O  t˚C→  Fe3O4 + 4H2­

4)  Железо реагирует с неметаллами при нагревании:

2Fe + 3Br2  t˚C→  2FeBr3

Fe + S  t˚C→  FeS

5) Железо легко растворяется в соляной и разбавленной серной кислотах при обычных условиях:

Fe + 2HCl = FeCl2 + H2­

Fe + H2SO4(разб.) = FeSO4 + H2­

6) В концентрированных кислотах – окислителях железо растворяется только при нагревании

2Fe + 6H2SO4(конц.)  t˚C→  Fe2(SO4)3 + 3SO2­ + 6H2O

Fe + 6HNO3(конц.)  t˚C→  Fe(NO3)3 + 3NO2­ + 3H2O

На холоде концентрированные азотная и серная кислоты пассивируют железо!

Опыт: "Взаимодействие железа с концентрированными кислотами"

7) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe + CuSO4 = FeSO4 + Cu

8) Качественные реакции на

Опыт:“Качественная реакция на железо (II)”

Опыт: “Качественная реакция на железо (III)”

IX. Применение железа


Основная часть получаемого в мире железа используется для получения чугуна и стали — сплавов железа с углеродом и другими металлами. Чугуны содержат около 4% углерода. Стали содержат углерода менее 1,4%.

Чугуны необходимы для производства различных отли­вок — станин тяжелых машин и т.п.

Изделия из чугуна

Стали используются для изготовления машин, различных строительных материалов, балок, листов, проката, рельсов, инструмента и множества других изделий. Для производства различных сортов сталей применяют так называемые легиру­ющие добавки, которыми служат различные металлы: Мn, Сr, Мо и другие, улучшающие качество стали.

Изделия из стали

X. Тренажеры


Тренажёр №1 - Генетический ряд Fe 2+

Тренажёр №2 - Генетический ряд Fe 3+

Тренажёр №3 - Уравнения реакций железа с простыми и сложными веществами

XI. Задания для закрепления


Задание №1. Составьте уравнения реакций получения железа из его оксидов Fe2O3 и Fe3O4, используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

Задание №2. Осуществите превращения по схеме:
Fe2O3   ->    Fe    -+H2O, t ->    X    -+CO, t->    Y    -+HCl->    Z
Назовите продукты X, Y, Z?

ЦОРы


Фильм: “Физические и химические свойства железа”

Опыт: "Получение железа алюминотермией"

Опыт: "Взаимодействие железа с кислородом"

Опыт: "Взаимодействие железа с концентрированными кислотами"

Опыт: “Качественная реакция на железо (II)”