ХИМИЯ – это область чудес, в ней скрыто счастье человечества,
величайшие завоевания разума будут сделаны
именно в этой области.(М. ГОРЬКИЙ)
I. Положение металлов в таблице Менделеева
Большая часть известных химических элементов образует простые вещества металлы.
К металлам относятся все элементы побочных (Б) подгрупп, а также элементы главных подгрупп, расположенные ниже диагонали «бериллий – астат» (Рис. 1). Кроме того, химические элементы металлы образуют группы лантаноидов и актиноидов.
Рис. 1. Расположение металлов среди элементов подгрупп А (выделены синим)
Анимация: “Деление элементов на металлы и неметаллы”
Виртуальная образовательная лаборатория: “Знакомство с образцами металлов”
Тренажёр "Положение металлов в таблице элементов"
II. Строение атомов металлов
По сравнению с атомами неметаллов, атомы металлов имеют большие размеры и меньшее число внешних электронов, обычно оно равно 1–2. Следовательно, внешние электроны атомов металлов слабо связаны с ядром, металлы их легко отдают, проявляя в химических реакциях восстановительные свойства.
Анимация: “Металлы - восстановители”
Рассмотрим закономерности изменения некоторых свойств металлов в группах и периодах.
В периодах с увеличением заряда ядра радиус атомов уменьшается. Ядра атомов все сильнее притягивают внешние электроны, поэтому возрастает электроотрицательность атомов, металлические свойства уменьшаются. Рис. 2.
Рис. 2. Изменение металлических свойств в периодах
В главных подгруппах сверху вниз в атомах металлов возрастает число электронных слоев, следовательно, увеличивается радиус атомов. Тогда внешние электроны будут слабее притягиваться к ядру, поэтому наблюдается уменьшение электроотрицательности атомов и увеличение металлических свойств. Рис. 3.
Рис. 3. Изменение металлических свойств в подгруппах
Перечисленные закономерности характерны и для элементов побочных подгрупп, за редким исключением.
Атомы элементов металлов склонны к отдаче электронов. В химических реакциях металлы проявляют себя только как восстановители, они отдают электроны и повышают свою степень окисления.
III. Физические свойства металлов
1. Агрегатное состояние и температуры плавления.
Температуры плавления металлов меняются в очень широких пределах. Самый легкоплавкий из металлов – ртуть – при комнатной температуре является жидкостью. Металл галлий плавится от теплоты человеческого тела. Из металлов широко применяемых в технике, наиболее легкоплавкие – олово и свинец. Наибольшую температуру плавления имеет вольфрам, из которого изготавливают нити накаливания лампочек. Металлы с температурой плавления выше 1000oC принято называть тугоплавкими.
ртуть галлий вольфрам
2. Окраска
Среди металлов немногие обладают характерной окраской. «Золото через свой изрядно желтый цвет и блещущую светлость от прочих металлов отлично», – писал Михаил Васильевич Ломоносов. Медь имеет розово-красный цвет, серебро и платина – белый, щелочной металл цезий – бледно-желтый. Для описания цвета других металлов трудно подобрать слова. Все они кажутся нам серыми с тем или иным едва заметным оттенком.
медь литий
3. Плотность
Металлы сильно различаются по плотности. Наиболее легкими являются щелочные металлы литий, натрий и калий. Литий плавает даже на поверхности керосина – жидкости с плотностью меньшей плотности воды. Металлы с плотностью ниже 5 г/см3 называют легкими. К ним, помимо щелочных и щелочно-земельных металлов, принадлежат магний, алюминий и другие. В число наиболее тяжелых входят переходные металлы, расположенные в шестом периоде, а также актиноиды. Ртуть, например, имеет плотность 13,6 г/см3, то есть литровая банка, заполненная ртутью, весит 13,6 кг!
4. Твердость
Вещества оценивают по его способности оставлять царапину на другом веществе. Наиболее твердым веществом является алмаз – он оставляет след на любых поверхностях. Из металлов по твердости к алмазу приближается хром – он царапает стекло. Наиболее мягкие металлы – щелочные. Они легко режутся ножом. Мягкими являются также свинец, олово, цинк, серебро.
5. Электро- и теплопроводность
Все без исключения металлы хорошо проводят электрический ток. Наибольшей электропроводностью обладает серебро, немного уступают ему медь и золото. Серебро – очень дорогой металл. Его используют в электротехнике при изготовлении высокоточных дорогостоящих приборов. Самые хорошие провода, применяемые в быту, медные. Они во много раз превосходят по самим характеристикам провода, изготовленные из алюминия. При прохождении через металл электрического тока часть электрической энергии преобразуется в тепловую – металл нагревается. Использование алюминиевых проводов при больших нагрузках на электрическую сеть может привести к их плавлению. Особенно опасны места стыка алюминиевых и медных проводов – они нагреваются намного быстрее. Неисправная электропроводка является причиной многих пожаров.
Анимация: “Изменение электропроводности металла при его нагревании и охлаждении”
6. Пластичность
Многие металлы пластичны, то есть обладают способностью изменять форму, например, расплющиваться при ударе молотком. Наибольшей пластичностью обладают золото, серебро, медь, олово. Их можно раскатывать в фольгу.
Фольга из меди
Фольга из золота
Общие свойства металлов – пластичность, способность отражать свет, тепло- и электропроводность – объясняются особенностями их строения. При сильном надавливании кусок металла изменяет форму – часть атомов смещается, но не рассыпается: общее электронное облако прочно удерживает все атомы вместе. В электрическом поле свободные электроны начинают двигаться в определенном направлении, такое упорядоченное движение электронов называют электрическим током.
Чем больше в металле свободных электронов и чем сильнее колебания атомов, находящихся в узлах решетки, тем быстрее происходит выравнивание температуры во всем куске металла, то есть тем больше его теплопроводность. Поэтому относительные значения тепло- и электропроводности для многих металлов близки.
Металлическая связь– это связь, которую осуществляют свободные электроны между катионами в металлической кристаллической решётке.
На рисунке изображена модель кристаллической решётки металлов: в узлах кристаллической решётки находятся как электрически нейтральные, так и положительно заряженные катионы металлов, а между ними свободно перемещаются отрицательно заряженные электроны (электронный газ). За счёт наличия в кристаллах свободно движущихся электронов для большинства металлов характерны общие физические свойства: особый металлический блеск, высокие электропроводность и теплопроводность, ковкость и другие.
IV. Получение металлов
Рудами называют минералы и горные породы, содержащие металлы и их соединения, из которых технически возможно и экономически целесообразно получать чистые металлы.
Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода C, оксида углерода(II) CO, водорода H2, металлов — алюминия Al, магния Mg.
1. Восстановление металлов из их оксидов с помощью углерода (в виде кокса, раньше – в виде древесного угля) или угарным газом – карботермия
MеxOy + C = CO2 + Me или MеxOy + CO = CO2 + Me
2.Обжиг сульфидов с последующим восстановлением
1 стадия – MеxSy+O2=MеxOy+SO2
2 стадия - MеxOy + C = CO2 + Me или MеxOy + CO = CO2 + Me
3. Восстановление металлов из их оксидов с помощью металлов называется металлотермией.
MеxOy + Al = Al2O3 + Me
Хром восстанавливают из оксида хрома(III) при помощи алюминия(алюминотермия): Cr+32O−23 + 2Al0 → (t°) 2Cr0 + Al+32O−23
Титан восстанавливают из оксида титана(IV) магнием: Ti + 4O2−2 + 2Mg0 → (t°) Ti0 + 2Mg+2O−2
4. Восстановление металлов из их оксидов с помощью водорода – водородотермия.Таким образом получают металлы с высокой степенью чистоты.
MеxOy + H2 = H2O + Me
5. Восстановление металлов электрическим током (электролиз)
Электрометаллургия — восстановление металлов из растворов или расплавов их соединений под действием электрического тока (электролиз).
2NaCl –расплав, электр. ток. → 2 Na + Cl2↑
CaCl2 –расплав, электр. ток.→ Ca + Cl2↑
расплавов гидроксидов:
4NaOH –расплав, электр. ток.→ 4Na + O2↑ + 2H2O
Электролиз используют для очистки металлов (электролитическое рафинирование).
Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов 1 в электролизер 3. При пропускании тока металл, подлежащий очистке 1, подвергается анодному растворению, то есть переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде 2, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми 4, либо переходят в электролит и удаляются.
Большинство металлов переводят в слитки при помощи литья: расплавленный металл заливают в форму, где он и застывает. Однако наиболее тугоплавкие металлы, например, вольфрам, из которого делают нити накаливания элепктроламп, расплавить в печи необычайно трудно. Для получения их слитков применяют порошковую металлургию – особый метод, позволяющий избежать литья. Он основан на спекании предварительно спрессованного порошка металла при температуре выше 1000°C в атмосфере водорода. Затем через брусок из металла пропускают электрический ток, за счет чего он разогревается до температуры плавления, и при этом отдельные его зерна свариваются друг с другом. Полученное изделие подвергают горячей ковке и прокатке.
V. Нахождение металлов в природе
Самый распространённый в земной коре металл – алюминий. Металлы встречаются как в соединениях, так и в свободном виде.
1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)
2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)
3. Благородные – в свободном виде (Au, Pt, Ag)
В свободном состоянии присутствуют в природе металлы, которые либо плохо окисляются кислородом, либо совсем не окисляются. Например, платина, золото, серебро. Реже – медь, ртуть и некоторые другие. Самородные металлы встречаются в природе в небольших количествах в виде зерен или вкраплений в различных минералах. Лишь изредка они образуют большие куски – самородки. Самый большой самородок золота весил 112 кг. Иногда металлы практически в чистом виде содержатся в метеоритах. Так, некоторые предметы из высокочистого железа, найденные археологами, объясняются именно тем, что они были изготовлены из метеоритного железа. Но чаще всего металлы существуют в природе в связанном состоянии в составе минералов.
Минерал – это химически и физически индивидуализированный продукт природной физико-химической реакции, находящийся в кристаллическом состоянии.
Очень часто это оксиды. Например, оксид железа (III) Fe2O3 – гематит, или красный железняк. Рис. 1.
|
|
|
|
Fe3O4 – магнетит, или магнитный железняк. Нередко минералами являются сульфидные соединения: галенит ZnS, киноварь HgS.
Активные металлы часто присутствуют в природе в виде солей (сульфаты, нитраты, хлориды, карбонаты).
Минералы входят в состав горных пород и руд. Рудами называются природные образования, содержащие минералы в таком количестве, чтоб из этих руд было выгодно получать металлы. Обычно перед получением металла из руды руду обогащают, удаляя пустую породу и различные примеси. При этом образуется концентрат, который и является исходным сырьем для металлургической промышленности.
VI. Химические свойства металлов
Общие химические свойства металлов представлены в таблице:
Важно запомнить, что в химических реакциях металлы выступают в качестве восстановителей: отдают электроны и повышают свою степень окисления. Рассмотрим некоторые реакции, в которых участвуют металлы.
Многие металлы могут вступать в реакцию с кислородом. Обычно продуктами этих реакций являются оксиды, но есть и исключения, о которых вы узнаете на следующем уроке. Рассмотрим взаимодействие магния с кислородом.
Магний горит в кислороде, при этом образуется оксид магния:
2Mg0 + O20 = 2Mg+2O-2
Рис. 1. Горение магния в кислороде
Атомы магния отдают свои внешние электроны атомам кислорода: два атома магния отдают по два электрона двум атомам кислорода. При этом магний выступает в роли восстановителя, а кислород – в роли окислителя.
Видео-опыт: “Горение магния”
Обратите внимание!!! Серебро, золото и платина с кислородом не реагируют.
2. Взаимодействие с галогенами, образуются галогениды
Для металлов характерна реакция с галогенами. Продуктом такой реакции является галогенид металла, например, хлорид.
Рис. 2. Горение калия в хлоре
Калий сгорает в хлоре образованием хлорида калия:
2К0 + Cl20 = 2K+1Cl-1
Два атома калия отдают молекуле хлора по одному электрону. Калий, повышая степень окисления, играет роль восстановителя, а хлор, понижая степень окисления,- роль окислителя
3. Взаимодействие с серой
Многие металлы реагируют с серой с образованием сульфидов. В этих реакциях металлы также выступают в роли восстановителей, тогда как сера будет окислителем. Сера в сульфидах находится в степени окисления -2, т.е. она понижает свою степень окисления с 0 до -2. Например, железо при нагревании реагирует с серой с образованием сульфида железа (II):
Fe0 + S0 = Fe+2S-2
Рис. 3. Взаимодействие железа с серой
Видео-опыт: “Взаимодействие цинка с серой”
Металлы также могут реагировать с водородом, азотом и другими неметаллами при определенных условиях.
Видео: "Самовоспламенение никеля на воздухе"
4. Взаимодействие с водой
Металлы по - разному реагируют с водой:
Помните!!!
Алюминий реагирует с водой подобно активным металлам, образуя основание:
2Al + 6H2O = 2Al(OH)3 + 3H2↑
Видео-опыт: “Взаимодействие натрия с водой”
5. Взаимодействие с кислотами
Металлы особо реагируют с серной концентрированной и азотной кислотами:
H2SO4 (конц.) + Me = соль + H2O + Х
|
Щелочные и щелочноземельные |
Fe, Cr, Al |
Металлы до водорода Сd-Pb |
Металлы после водорода (при t) |
Au, Pt |
X |
H2S↑ могут S↓ или SO2↑ |
1)пассивируются на холоде; 2) при нагревании → SO2↑ |
S↓ могут H2S илиSO2 |
SO2↑ |
- |
H2SO4 (разб) + Zn = ZnSO4 + H2↑
H2SO4 (разб) + Cu ≠
2H2SO4 (конц.) + Cu = CuSO4 + 2H2O + SO2↑
Внимание!
Pt, Au + H2SO4 (конц.) →реакции нет
Al, Fe, Cr + H2SO4 (конц.) холодная→ пассивация