Закон постоянства состава веществ

Данный урок посвящен изучению закона постоянства состава вещества. Из материалов урока вы узнаете, кто открыл этот закон.

 

 

I. Открытие закона постоянства состава вещества

К основным законам химии относится закон постоянства состава:

Всякое чистое вещество независимо от способа его получения всегда имеет постоянный качественный и количественный состав.

Атомно-молекулярное учение позволяет объяснить закон постоянства состава. Поскольку атомы имеют постоянную массу, то и массовый состав вещества в целом постоянен.

Закон постоянства состава впервые сформулировал французский ученый-химик Ж.Пруст в 1808 г.

Он писал: "От одного полюса Земли до другого соединения имеют одинаковый состав и одинаковые свойства. Никакой разницы нет между оксидом железа из Южного полушария и Северного. Малахит из Сибири имеет тот же состав, как и малахит из Испании. Во всем мире есть лишь одна киноварь".

В этой формулировке закона, как и в приведенной выше, подчеркивается постоянство состава соединения независимо от способа получения и места нахождения.

Чтобы получить сульфид железа (II) FeS, мы смешиваем железо и серу в соотношении 7:4. 

Посмотрите  видео-эксперимент.

Если смешать их в другой пропорции, например 10:4, то химическая реакция произойдет, но 3 г железа в реакцию не вступит. Почему наблюдается такая закономерность? Известно, что в сульфиде железа (II) на каждый один атом железа приходится один атом серыСледовательно, для реакции нужно брать вещества в таких массовых соотношениях, чтобы сохранялось соотношение атомов железа и серы (1:1). Поскольку численные значения атомных масс Fe, S и их относительных атомных масс Ar (Fe), Ar (S)совпадают, можно записать: Ar (Fe) : Ar (S) = 56:32 = 7:4.
Отношение 7:4 сохраняется постоянно, в каких бы единицах массы ни выражать массу веществ (г, кг, т, а.е.м.). Большинство химических веществ обладает постоянным составом.

Развитие химии показало, что наряду с соединениями постоянного состава существуют соединения переменного состава. 

Ве­ще­ства, име­ю­щие пе­ре­мен­ный со­став су­ще­ству­ют, их на­зва­ли в честь Бер­тол­ле – бер­тол­ли­да­ми.

Бер­тол­ли­ды — со­еди­не­ния пе­ре­мен­но­го со­ста­ва, не под­чи­ня­ю­щи­е­ся за­ко­нам по­сто­ян­ных и крат­ных от­но­ше­ний. Бер­тол­ли­ды яв­ля­ют­ся несте­хио­мет­ри­че­ски­ми би­нар­ны­ми со­еди­не­ни­я­ми пе­ре­мен­но­го со­ста­ва, ко­то­рый за­ви­сит от спо­со­ба по­лу­че­ния. Мно­го­чис­лен­ные слу­чаи об­ра­зо­ва­ния бер­тол­ли­дов от­кры­ты в ме­тал­ли­че­ских си­сте­мах, а также среди ок­си­дов, суль­фи­дов, кар­би­дов, гид­ри­дов и др. На­при­мер, оксид ва­на­дия(II) может иметь в за­ви­си­мо­сти от усло­вий по­лу­че­ния, со­став от V0,9 до V1,3.

По предложению Н.С. Курнакова первые названы дальтонидами (в память английского химика и физика Дальтона), вторые - бертоллидами (в память французского химика Бертолле, предвидевшего такие соединения). Состав дальтонидов выражается простыми формулами с целочисленными стехиометрическими индексами, например Н2О, НCl, ССl4, СO2. Состав бертоллидов изменяется и не отвечает стехиометрическим отношениям.

В связи с наличием соединений переменного состава в современную формулировку закона постоянства состава следует внести уточнение.

Cостав соединений молекулярной структуры, т.е. состоящих из молекул, - является постоянным независимо от способа получения. Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.

II. Решение задач

На основе закона постоянства состава можно производить различные расчёты.
 

Задача №1
В каких массовых отношениях соединяются химические элементы в серной кислоте, химическая формула которой H2SO4?

Решение:
Используя ПСХЭ найдём относительные атомные массы химических элементов:
Ar(H)=1, Ar(S)=32, Ar(O)=16.
Определим массовые отношения этих элементов в формуле H2SO4
m(H) : m(S) : m(O) = 2Ar(H) : Ar(S) : 4Ar(O) = 2 : 32 : 64 = 1 : 16 : 32

Таким образом, чтобы получить 49 г серной кислоты (1+16+32=49), необходимо взять 1 г - Н, 16 г - S и 32 г - О.

Задача №2
Водород соединяется с серой в массовых отношениях 1 : 16. Используя данные об относительных атомных массах этих элементов, выведите химическую формулу сероводорода.

Решение:
Используя ПСХЭ найдём относительные атомные массы химических элементов:
Ar(H)=1, Ar(S)=32.
Обозначим количество атомов водорода в формуле - х, а серы - у: НхSу
m(H) : m(S) = хAr(H) : уAr(S)= х1 : у32 = (2*1) : (1*32) = 2 : 32 = 1 : 16
Следовательно, формула сероводорода Н2S

Задача №3
Выведите формулу сульфата меди, если массовые отношения в нём меди, серы и кислорода соответственно равны 2:1:2?

Решение:
Используя ПСХЭ найдём относительные атомные массы химических элементов:
Ar(Cu)=64, Ar(S)=32, Ar(O)=16.
Обозначим количество атомов меди в формуле - х, серы - у, а кислорода - z: CuxSyOz
m(Cu) : m(S) : m(O) = хAr(Cu) : уAr(S) : zAr(O) = x64 : y32 : z16 = (1*64) : (1*32) : (4*16) = 64:32:64 = 2:1:2

III. Контрольные задачи 

№1. Применяя сведения об относительных атомных массах химических элементов, вычислите массовые отношения элементов в угольной кислоте, химическая формула которой H2CO3.

№2. Определите массу кислорода, реагирующего без остатка с 3 г водорода, если водород и кислород в данном случае соединяются соответственно в соотношении 1 : 8?

№3. Углерод и кислород в углекислом газе соединяются в массовых отношениях 3 : 8.
Выведите химическую формулу углекислого газа

№4. Определите массу водорода, реагирующего без остатка с 48 г кислорода, если водород и кислород в данном случае соединяются в соотношеннии 1:8.

 

ЦОРы

Видео:“Реакция соединения серы с железом”