ХИМИЯ – это область чудес, в ней скрыто счастье человечества,
величайшие завоевания разума будут сделаны
именно в этой области.(М. ГОРЬКИЙ)
Таблица
|
I. Закон сохранения массы вещества
Масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции. (М.В.Ломоносов, 1748 г)
Подтвердить правильность закона сохранения массы веществ можно с помощью следующего опыта. В первом сосуде Ландольта подготовим растворы йодида калия и нитрата свинца. Во втором сосуде – пройдет реакция хлорида железа с роданидом калия. Плотно закрываем пробки. Уравновешиваем чашки весов. Сохранится ли равновесие после окончания реакций? В первом сосуде выпадает желтый осадок йодида свинца, во втором образуется темно-красный роданид трехвалентного железа. В сосудах Ландольта произошли химические реакции: образовались новые вещества. Но равновесие не нарушилось. Масса исходных веществ всегда равна массе продуктов реакции.
Рис. Эксперимент, подтверждающий правильность закона сохранения массы веществ
Опыты, иллюстрирующие закон сохранения массы веществ
Приведем пример еще одного опыта, доказывающего правильность закона сохранения массы веществ в химических реакциях. Внутри колбы при закрытой пробке будет гореть свеча. Уравновесим весы. Подожжем свечу и опустим ее в колбу. Плотно закроем колбу пробкой. Горение свечи – это химический процесс. Израсходовав находящийся в колбе кислород, свеча гаснет, химическая реакция завершается. Но равновесие весов не нарушается: масса продуктов реакции остается такой же, какой была масса исходных веществ.
Рис. Эксперимент с горящей свечой в колбе
Открытие закона сохранения массы веществ имело огромное значение для дальнейшего развития химии. На основании закона сохранения массы веществ производят важнейшие расчеты и составляют уравнения химических реакций.
2H2 + O2 = 2H2O
II. Закон постоянства состава вещества
1. Открытие закона постоянства состава веществ
Ученые XVII-XVIII вв. проводили множество количественных измерений, в т.ч. по определению массовой доли элемента в веществе. Но результаты их опытов были неточными, и как следствие, не совпадали.
Французский химик Клод Луи Бертолле пытался доказать, что состав веществ зависит от пропорций, в которых находятся реагирующие вещества.
Рис. Клод Луи Бертолле
В отличие от него другой французский химик Жозеф Луи Пруст провел много экспериментов по исследованию состава различных веществ и сделал вывод о постоянстве состава вещества.
Рис. Жозеф Луи Пруст
В 1808 г. Пруст сформулировал закон постоянства состава веществ: «Вещества имеют постоянный состав независимо от способа и места их получения».
2. Суть закона
В своей работе «Исследование меди» в 1799 г. Пруст показал, что природный карбонат меди и карбонат меди, полученный химиками в лаборатории, имеют один и тот же состав.
Ничем не различаются вода, текущая из нашего крана, вода из родника, или вода, полученная синтетическим путем (имеется в виду состав чистого вещества – воды, а не состав смеси). Вода всегда будет содержать по массе 11,1 % водорода и 88,9 % кислорода.
Но природа гораздо разнообразнее, чем любая теория, созданная человеком. И из закона постоянства состава веществ есть исключения. В XX веке было обнаружено, что некоторые соединения не имеют постоянного состава.
3. Ограниченность закона
Таким образом, нельзя сказать, что Клод Бертолле был абсолютно неправ. Закон постоянства состава веществ имеет ограничения.
Вещества, имеющие переменный состав существуют, их назвали в честь Бертолле – бертоллидами.
Бертоллиды — соединения переменного состава, не подчиняющиеся законам постоянных и кратных отношений. Бертоллиды являются нестехиометрическими бинарными соединениями переменного состава, который зависит от способа получения. Многочисленные случаи образования бертоллидов открыты в металлических системах, а также среди оксидов, сульфидов, карбидов, гидридов и др. Например, оксид ванадия(II) может иметь в зависимости от условий получения, состав от V0,9 до V1,3.
Следует помнить!
III. Закон Авогадро
В равных объёмах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковое число молекул. (1811 г)
Cледствия из закона Авогадро:
1 следствие:
Одинаковое число молекул различных газов при одинаковых условиях занимает одинаковый объём.
Так, 6,02 ∙ 1023 молекул (1 моль) любого газа и любой смеси газов при н.у. занимает объём равный 22,4 л.
2 следствие:
Отношение объёмов реагирующих веществ, измеренных при одинаковых условиях, равно отношению стехиометрических коэффициентов, т.е. равно отношению количеств этих веществ.
V1:V2:V3 = ν1:ν2:ν3
H2 + Cl2 = 2HCl
3 следствие:
Отношение масс одинаковых объёмов различных газов при одинаковых условиях равно отношению их плотностей (1).
Это отношение называется относительной плотностью одного газа по другому (3)
D – показывает во сколько раз один газ тяжелее или легче другого и является безразмерной величиной.
Например, (4)
IV. Закон объёмных отношений
При неизменных температуре и давлении объёмы, вступающих в реакцию газов, относятся друг к другу, а также к объёмам образующихся газообразных продуктов, как небольшие целые числа. (Ж.Гей-Люссак, 1805 г)